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Abstract

In this paper, we describe an integral equation approach for simulating diffusion problems with moving interfaces. The
solutions are represented as moving layer potentials where the unknowns are only defined on the interfaces. The resulting
integro-differential equation (IDE) system is solved using spectral deferred correction (SDC) techniques developed for gen-
eral differential algebraic equations (DAEs), and the time dependent potentials are evaluated efficiently using fast convo-
lution algorithms. The numerical solver is applied to the BCF model for the epitaxial step-flow growth of crystals, for
which the solutions are calculated accurately instead of using quasi-static approximations. Numerical results in 1 + 1
dimensions are compared with available results in the literature.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Many problems in science and engineering require the numerical solution of diffusion or diffusion type
equations with moving interfaces. Examples include the study of crystal growth in semiconductor manufac-
turing and simulations of diffusion–reaction process in animals and plants. For problems of this kind, most
existing schemes are based on finite difference or finite element methods. In this paper, as an alternative
approach, we present an efficient and accurate scheme using integral equation ideas.

Integral equation methods (IEM) have traditionally been neglected as a general numerical scheme. In these
methods, the solution is represented as convolutions of the underlying Green’s function (fundamental solu-
tion) with given or unknown density functions, which are defined on the interface (layer potentials) or inside
the computational domain (volume potentials). Direct evaluations of these volume and layer potentials require
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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a prohibitive amount of work: when n discretization points are used in a numerical quadrature, usually O(n2)
operations are required. However, the situation is changing rapidly due to the introduction of fast convolution
algorithms. The first such algorithm is the fast Fourier transform (FFT) introduced by Cooley and Tukey in
1965 [10]. For uniform grid points, the total amount of work is reduced to O(n logn). Starting from 1980 or so,
several new techniques have been developed for ‘‘arbitrary’’ grid distributions, including the O(n logn) FFT
based methods (e.g., particle mesh Ewald (PME), particle–particle particle–mesh (P3M), and precorrected
FFT (pFFT) [13,38,54]) and multipole expansion based methods (e.g., O(n logn) tree code [2,5] and the asymp-
totically optimal O(n) fast multipole method (FMM) [24,27]). With the fast algorithm accelerations, integral
equation approach has been proven extremely powerful for large scale scientific problems, especially in the
fields of electromagnetics and fluid dynamics. Compared with finite difference and finite element methods,
integral equation methods have several advantages: they are insensitive to the complexity of geometry; with
proper formulation, they are unconditionally stable; and they easily allow for adaptive mesh refinement
and parallel computing.

Enormous progress has also been made for the diffusion equation. In [29], an algorithm for solving the pure
initial value problem in d + 1 dimensions
Utðx; tÞ ¼ DUðx; tÞ for x 2 Rd ; t > 0;

Uðx; 0Þ ¼ f ðxÞ for x 2 Rd

(

was presented by Greengard and Strain. To evaluate the ‘‘initial potential’’
Uðx; tÞ ¼ ð4ptÞ�d=2

Z
Rd

e�jx�yj2=4tf ðyÞdvy; ð1Þ
their ‘‘fast Gauss transform’’ (FGT) requires O(N + M) work to determine U(x, t) at N points given the initial
data f(y) at M points, while direct method requires O(NM). In [28], an algorithm for the rapid evaluation of
the history dependent heat potentials was developed. The potentials were divided into a ‘‘history’’ part (rep-
resenting the influence of the density at distant times) and a ‘‘local’’ part (reflecting the influence of the density
over the most recent time). The history part is updated using Fourier series, and the local part is evaluated
using high order product rules. More recently, a new version of the fast Gauss transform was introduced
by Greengard and Sun in [30].

In this paper, we apply integral equation approach to diffusion problems with moving interfaces, in partic-
ular, the epitaxial step-flow growth of crystals described by the BCF model [9,58,70]. In this model, the crystal
surface consists of terraces with different heights separated by atomic-height steps. The adatoms are deposited
onto the crystal surface, and then diffuse on the terraces until they meet and get incorporated into the steps.
The diffusion process is modeled by the diffusion equation /t = DD/ + F, where /(x, t) is the adatom density,
x 2 Rd, d = 1 or 2, t 2 R, D is the diffusion constant, and F(x, t) is the deposition flux which is usually assumed
to be a constant. The incorporation of adatoms to the steps is described by the interface conditions defined
only on the steps. Traditionally, this BCF model was solved by the quasi-static approximation in the regime
where the deposition rate of the adatoms onto the surface is much less than the adatom hopping rate on the
terraces [9,58,70], or by the finite difference method for problems with equidistant steps when the model can be
transformed into a diffusion process on a terrace with fixed boundaries [48,53,70]. Recently, several phase field
models were proposed in [41,46,50,55,63], simulation methods based on the level set framework [49] were pro-
posed in [11,12], and a finite element method was developed in [4]. However, to our knowledge, very limited
integral equation solvers have been proposed in the literature. The Green’s function representation was used
by Liu and Metiu [46] for linear instability analysis for uniform step trains, and an integral equation method
coupled with level set framework was developed by Sethian and Strain [65] to simulate solidification-type
problems.

In our integral equation approach, by introducing the moving layer potentials, the original BCF model is
transformed into an integro-differential equation (IDE) system where the unknown density functions are only
defined on the steps between different terraces, hence dramatically reduce the total number of unknowns. The
layer potentials are efficiently evaluated using fast convolution techniques, including those introduced by
Greengard and Strain in [28]. For the IDE system, most existing solvers are based on either the backward dif-
ferentiation formula (BDF) or Runge–Kutta methods [8,35,36]. Recently, however, integral equation ideas
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have also been tested. In [15], spectral integration is coupled with Gaussian quadratures and deferred/defect
corrections. The resulting spectral deferred correction (SDC) methods turn out to be very competitive with
best existing ODE initial value problem solvers. SDC methods were also applied to partial differential equa-
tions (PDEs) and differential algebraic equations (DAEs) in [7,43,47,61,62]. In this paper, we generalize SDC
techniques to IDE systems. Preliminary numerical results show that higher order accuracy can be obtained for
problems with moving interfaces.

This paper is organized as follows. In Section 2, we present the mathematical model for epitaxial step-flow
growth, which is a representing instance of general diffusion problems with moving interfaces. In Section 3,
starting from jump conditions for general moving layer diffusion potentials, we formulate the IDE system
for the BCF model. In Section 4, we present a spectral deferred correction scheme for integrating general
DAEs and show how it can be generalized to IDEs. The efficient evaluation of layer potentials is also dis-
cussed. One difficulty in the numerical simulation is that when two steps are close to collision, adaptive tem-
poral discretization is required to correctly capture the local dynamics. In Section 5, by studying solutions near
collision, we present ‘‘reduced order’’ local collision model to overcome this difficulty. Numerical simulation
results in 1 + 1 dimensions are presented in Section 6.

2. BCF model for epitaxial step-flow growth of crystals

Diffusion type equations with moving interfaces have been used to model different biological, chemical, and
physical processes including drug delivery, tumor growth, fluid–solid interactions, and manufacturing process
of micro-electro-mechanical systems (MEMS). A specific example is the epitaxial growth of crystals.

Epitaxial growth is the growth of crystalline film on a crystalline substrate following the same structure
as the substrate. The crystal surface consists of terraces separated by atomic-height steps. Adatoms are
deposited onto the surface, and diffuse on the terraces until they meet and get incorporated into the steps.
As a result, the steps move forward and the crystal grows, as shown in Fig. 1. This growth mode is referred
to as the step-flow growth, which can be described by the BCF model proposed by Burton et al. [9,58,70].
The best way to grow a crystal is to grow it on an infinite monotonic surface with parallel, equidistant steps
[58,70].

Detailed description of the BCF model can be found in [58,70]. In this section, for simplicity of discus-
sion, we focus on the model in 1 + 1 dimensions, in which the steps are straight and parallel, and diffusion
on the terrace is uniform along the direction of steps. Without loss of generality, in the remainder of this
section, the surface is assumed to be infinite, and the height of each step is assumed to be +1, where the
height of a step is defined as the height of the terrace on the left minus the height on the right (in atomic-
height units). The height is positive if the left is higher than the right, and negative otherwise. Letting
deposition

diffusion attachment

terrace
step

Fig. 1. Epitaxial growth by step flow.
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{wj(t)} with � � � < wj�1(t) < wj(t) < wj+1(t) < � � � be the locations of steps at time t, the equations describing
the adatom diffusion and step motion can be written as
/t ¼ D/xx þ F ; wjðtÞ < x < wjþ1ðtÞ;
D/x � kþ/ ¼ 0; x ¼ wþj ðtÞ;
D/x þ k�/ ¼ 0; x ¼ w�jþ1ðtÞ;

w0jðtÞ ¼ a2 kþ/jx¼wþj
þ k�/jx¼w�j

� �
;

8>>>>><
>>>>>:

ð2Þ
where /(x, t) is the adatom density on the terraces, F is the deposition flux which is assumed to be a constant,
D is the diffusion constant on the terraces, a is the lattice constant, k+ and k� are the hopping rates of an ada-
tom to the upward step and downward step, respectively.

The first equation in system (2) describes the deposition and diffusion processes of adatoms on a terrace
between the jth and (j + 1)st steps. The second and third equations describe the incorporating process of
adatoms into the steps, which serve as boundary conditions of the diffusion problem. Note that there is
a jump in the adatom density /(x, t) at a step wj(t). The fourth equation gives the velocity of each step.
Usually the adatoms prefer to go to the upward step rather than to the downward step, since an energy
barrier exists near the downward step. This is called the Schwoebel barrier [64]. The Schwoebel effect stip-
ulates that
kþ P k�. ð3Þ

In this paper, we present an integral equation approach for solving the BCF model (2) as an alternative to the
quasi-static approximation and other methods mentioned in the introduction section. We shall compare our
simulation results with available analytical and numerical results, which are reviewed briefly below.

In the literature, the quasi-static approximation /t � 0 was used when the deposition process is much
slower than the diffusion process, i.e., when the Peclet number
Pe � a2�l2F
D
� 1; ð4Þ
where �l is the average spacing between steps [58,70]. Under the quasi-static approximation, the original BCF
model (2) is simplified and analytical solution can be obtained. The step velocity in this regime is
w0jðtÞ ¼ a2F
lj þ lj�1

2
þ

a2Flj

2
1

k� � 1
kþ

� �
1

kþ þ 1
k� þ

lj

D

�
a2Flj�1

2
1

k� � 1
kþ

� �
1

kþ þ 1
k� þ

lj�1

D

; ð5Þ
where lj = wj+1 � wj is the spacing between the jth and (j + 1)st steps. The readers are referred to [58,70] for
more results in this regime. Some recent results can be found in, e.g., [14,17,42,56,59,60,69,72,73].

More physics can be incorporated in the BCF model (2), such as the nucleation of new steps [17,60], and the
step–step and adatom–step elastic interactions [14,69,72,73]. These can also be handled within the framework
of our integral equation method. We shall present an example which includes the deterministic nucleation
model of Elkinani and Villain, and Politi and Villain [17,60], in which a new terrace with width 2a is nucleated
at the center of a top terrace when its width is greater than a critical value lc. In the regime Pe� 1, when
k+ = +1 (i.e., no barrier for the adatoms to get incorporated into an upward step), lc satisfies
l3

cðlc þ 6lsÞ ¼ 12D=F , where ls = D/k� � a is a measure of the strength of the Schwoebel effect [17,60].
In the regime Pe � 1, the deposition process and the diffusion process on the terraces are comparable, and

the steps move fast [22,23,37,46,48,53,70,71]. In this regime, the BCF model (2) predicted oscillations in the
step velocity [37,53,70]. These oscillations were suggested as a possible mechanism for the intensity oscillations
observed in reflecting high-energy electron-diffraction (RHEED) studies of growing surfaces [53], and condi-
tions under which these oscillations occur were investigated [37]. However, nucleation of new terraces is impor-
tant in this regime due to the relative high adatom density compared with that in the regime Pe� 1. Research
results on both the step velocity oscillations and the nucleation indicated that nucleation is more likely to be
the primary mechanism for this RHEED intensity oscillation [37,48]. The nucleation process depends on
the adatom density for which analytical expression is not available as the quasi-static approximation is no
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longer valid in this regime. Traditionally, problems in this regime were studied numerically for equidistant step
arrays, so that the problems can be transformed into a diffusion process on a terrace with fixed boundaries
[48,53,70], and available nucleation models in this regime used the rate equations for the total number of
terraces or islands coupled with the adatom density [11,12,48]. In this paper, we shall focus on the integral
equation method for solving the full BCF system (2), and examine the method by comparing the simulation
results with available results on the step velocity oscillations without nucleation [37,53,70]. Since the adatom
density is solved accurately and efficiently using our integral equation method, nucleation model based on
adatom density in this regime within the framework of the integral equation method can be developed without
essential mathematical difficulties. This involves more physics and detailed discussions will be presented in the
future.
3. Integral equation formulations

In this section, we study analytical properties of general moving layer diffusion potentials, the results in
1 + 1 dimensions are shown in Theorems 1 and 2. Using moving layer potentials, the original BCF model
can be reduced to an IDE system where the unknowns are only defined on the steps.

3.1. Jump conditions of moving layer potentials

Traditional potential theory solves the diffusion equation with stationary boundary conditions in d spatial
dimensions using a combination of the initial potential to satisfy the initial condition (see Eq. (1)), the volume
potential for the source term, and the layer potentials for different boundary conditions [32,44]. The purpose
of this section is to study the moving layer potentials and their jump properties.

Assuming C(t) is the time dependent surface of a domain in Rd, for a given density function q(y(t), t),
y(t) 2 C(t), the single layer potential is defined for any x 2 Rd as
Sqðx; tÞ ¼
Z t

0

Z
CðsÞ

Gðx� yðsÞ; t � sÞqðyðsÞ; sÞdsyðsÞ ds; ð6Þ
where sy(s) denotes the surface integral over C(s) and G(x, t) is the free space Green’s function for the heat
equation given by
Gðx; tÞ ¼ ð4ptÞ�d=2e�
kxk2

4t . ð7Þ
In many computations, one may prefer the periodic Green’s function instead of the free space one. The peri-
odic Green’s function can be represented either in the Fourier domain using Fourier series or in the physical
domain by the method of images. When d = 1, for the interval [�p,p], the Fourier domain representation is
given by
Kðx; tÞ ¼ 1

2p

X1
k¼�1

e�k2teikx; ð8Þ
while in physical domain, it is the lattice sum of G(x, t) in Eq. (7) given by
Kðx; tÞ ¼ 1ffiffiffiffiffiffiffi
4pt
p

X1
k¼�1

e�ðx�2pkÞ2=4t. ð9Þ
The equivalence of these two representations is a particular instance of the Poisson summation formula [16].
Similarly, the double layer potential with density l(y(t), t) (y(t) 2 C(t)) is given by
Dlðx; tÞ ¼
Z t

0

Z
CðsÞ

o

omyðsÞ
Gðx� yðsÞ; t � sÞlðyðsÞ; sÞdsyðsÞ ds; ð10Þ
where my(t) is the normal direction of the surface C(t) at y(t).
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For completeness of concepts, for a given density function f(x, t), the volume potential is defined by
V f ðx; tÞ ¼
Z t

0

Z
XðsÞ

Gðx� y; t � sÞf ðy; sÞdvy ds; ð11Þ
where dvy represents the volume integration over the time dependent physical domain X(t) in Rd. The volume
potential satisfies the equation
ðV f ðx; tÞÞt ¼ DV f ðx; tÞ þ f ðx; tÞ.

When d = 1, the following jump conditions for single and double layer potentials defined on a moving inter-
face can be derived.

Theorem 1. Assume the interface at time t locates at y(t), the single-layer potential Sqðx; tÞ ¼
R t

0 Gðx� yðsÞ;
t � sÞqðyðsÞ; sÞds is continuous "x 2 R and t P 0, and satisfies

(1) o
ot Sqðx; tÞ ¼ o2

ox2 Sqðx; tÞ 8x 6¼ yðtÞ, t > 0,

(2) Sq(x,0) = 0 "x 6¼ y(0),

(3) limx!yðtÞ�
o
ox Sqðx; tÞ � limx!yðtÞþ

o
ox Sqðx; tÞ ¼ qðyðtÞ; tÞ.

In the theorem, the + sign gives the limit as x approaches y(t) from the direction x > y(t), and the � sign is
the limit from the other direction x < y(t).

For double layer potentials, we have

Theorem 2. Assume the interface at time t locates at y(t), the double-layer potential Dlðx; tÞ ¼
R t

0
o
oy Gðx� yðsÞ;

t � sÞlðyðsÞ; sÞds is defined "x 2 R and t P 0, and satisfies

(1) o
ot Dlðx; tÞ ¼ o2

ox2 Dlðx; tÞ "x 6¼ y(t), t > 0.

(2) Dl(x,0) = 0 "x 6¼ y(0),

(3) limx!y(t)�Dl(x, t) � limx!y(t)+Dl(x, t) = �l(y(t), t),

(4) limx!yðtÞ�
oDlðx;tÞ

ox � limx!yðtÞþ
oDlðx;tÞ

ox ¼ lðyðtÞ;tÞ
2

y0ðtÞ.

The proof of above theorems uses the simple but tedious local Taylor expansions and hence we neglect the
details.

For standard boundary value problems where C is independent of time, above theorems are reduced to the
well-known jump conditions for stationary (y 0(t) = 0) layer potentials as in the following corollary, which can
be found in standard textbooks including [32]:

Corollary 1. In one dimensional space, when x approaches a point x0 on the interface, we have

(1) [Sq(x, t)] = 0,

(2) o
omx

Sqðx; tÞ
h i

¼ qðx0; tÞ,
(3) [Dl(x, t)] = �l(x0, t),

(4) o
omx

Dlðx; tÞ
h i

¼ 0.

Here [Æ] represents the jump across the boundary from x < x0 to x > x0.

Jump conditions for higher order derivatives and higher dimensions for both single and double layer poten-
tials can be derived similarly. The detailed results with applications will be reported at a later time.

3.2. Integro-differential equation system

In this section, we focus on the BCF model for epitaxial crystal growth. Using both single and double layer
potentials, we show how the original partial differential equations can be reduced to an IDE system.
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For simplicity, we first non-dimensionalize model system (2) by rescaling length by L0 (the length scale we
are interested in and contains many steps) and time by T ¼ L2

0=D. Let /0 = a2/ be the coverage of a lattice site
(average number of atoms per atom site), F 0 ¼ a2L2

0F =D be the dimensionless deposition flux, and
k�0 ¼ k�L0=D be the dimensionless hopping rates, the model system then becomes (still using x, t, /, wj, F,
and k± for the dimensionless variables and quantities)
/t ¼ /xx þ F ; wjðtÞ < x < wjþ1ðtÞ;
/x � kþ/ ¼ 0; x ¼ wþj ðtÞ;
/x þ k�/ ¼ 0; x ¼ w�jþ1ðtÞ;
w0jðtÞ ¼ kþ/jx¼wþj

þ k�/jx¼w�j
.

8>>>><
>>>>:

ð12Þ
This system contains three dimensionless parameters F, k+ and k�. Assuming periodic boundary conditions
for an interval of length L containing N steps, the Peclet number (see Eq. (4)) in the dimensionless system be-
comes Pe ¼ �l2F , where �l ¼ L=N is the average spacing between steps.

The first step to solve this system is to represent the solution /(x, t) as
/ðx; tÞ ¼ Ft þ
Z L

0

Kðx� y; tÞ/ðy; 0Þdy

þ
XN

j¼1

Z t

0

Kðx� wjðsÞ; t � sÞqjðsÞdsþ
Z t

0

oKðx� wjðsÞ; t � sÞ
owj

ljðsÞds

" #
. ð13Þ
Here, K(x, t) is the corresponding periodic Green’s function, qj(t) = q(wj(t), t) and lj(t) = l(wj(t), t) are the un-
known density functions at time t. For non-periodic boundary conditions, additional layer potentials are
added for the left and right boundaries, respectively. Note that using Theorems 1 and 2 and properties of
the initial potential, this representation automatically satisfies the first equation in (12). Applying jump con-
ditions to Eq. (13), the system to be solved becomes
w0j ¼ kþ/þ þ k�/� ¼ /þx � /�x ¼ �
w0j
2

lj þ qj

" #
; ð14Þ
with boundary conditions for the jth step
lim
x!w�j
ð/x þ k�/Þ ¼ 0; ð15Þ

lim
x!wþj

ð/x � kþ/Þ ¼ 0. ð16Þ
We refer to this formulation (Eqs. (14)–(16)) as an IDE system. The unknowns are the density functions qj(t)
and lj(t), and the step locations wj(t). One obvious advantage of this formulation is that the unknowns are
only defined on the steps, not the interior of the terraces. Such formulations are usually referred to as surface
integral formulations in the integral equation methods literature. We postpone more explicit descriptions of
these equations to Section 4, where spectral deferred correction techniques are introduced to derive higher or-
der in temporal direction.

4. Numerical techniques

In this section, we discuss the efficient solution of the IDE system (14)–(16). We focus on two ideas: (a) how
to derive higher order accuracy in temporal direction by iteratively refining the approximate solution using a
first order method to the ‘‘error equation’’, and (b) how different potentials can be efficiently evaluated.

4.1. Spectral deferred correction methods

The basic idea of deferred and defect correction methods is to use a low order method and iteratively
solve the error equations for higher order accuracy [6,20,21,33,34,40,51,52]. In [15], by coupling Gaussian
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quadrature with Picard integral equation, Dutt et. al. proposed the spectral deferred correction methods
(SDC) for ODE initial value problems. Preliminary results show that the resulting numerical methods are
comparable to best existing schemes in efficiency but with better accuracy and stability properties. In this sec-
tion, we generalize this technique to differential algebraic equations (DAEs).

For simplicity, we restrict our discussion to a general DAE initial value problem
HðyðtÞ; y 0ðtÞ; tÞ ¼ 0;
where y(0) = y0 and y0ð0Þ ¼ y 00 are specified initially and satisfy Hðy0; y
0
0; 0Þ ¼ 0. Suppose we want to march

from time t0 = 0 to Dt, and p Gaussian nodes are given by t1, t2, . . . , tp in [0,Dt]. The spectral deferred correc-
tion scheme works by searching for a polynomial approximation y 0(t) � P(t) such that
H y0 þ
Z ti

0

P ðsÞds; P ðtiÞ; ti

� �
¼ 0 for i ¼ 1; 2; . . . ; p. ð17Þ
This formula is often referred to as the collocation or pseudo-spectral formulation. Because of the use of
Gaussian nodes, P(t) can be constructed as a Legendre polynomial expansion where the coefficients are com-
puted using Gaussian quadrature. Also,

R ti

0 P ðsÞ is derived using spectral integration [25] hence the numerical
unstable differentiation operator is avoided and it is possible to derive high order methods.

The deferred correction methods first assume an approximate solution exists and is denoted by P[0](t).
Introducing the error
dðtÞ ¼ P ðtÞ � P ½0�ðtÞ;

the error equation is defined as
H y0 þ
Z ti

0

P ½0�ðsÞdsþ
Z ti

0

dðsÞds; P ðtiÞ þ dðtiÞ; ti

� �
¼ 0.
A low order scheme is then applied to derive di = d(ti) at Gaussian nodes, i.e., using implicit Euler method and
solving equations
H y0 þ
Z ti

0

P ½0�ðsÞdsþ
Xi

j¼1

ðtj � tj�1Þdj; P ðtiÞ þ di; ti

 !
¼ 0 ð18Þ
for i = 1, . . . ,p. The approximate solution is then updated using
P ½0�ðtÞ ¼ P ½0�ðtÞ þ dðtÞ;

where d(t) is the interpolating polynomial of (ti,di) at Gaussian nodes. This procedure is repeated until the
error is below a prescribed tolerance.

Pseudo-Code: Spectral Deferred Correction Method

Comment [Initial approximation]
Initially, y 0(t) is approximated by a constant function P ½0�ðtÞ ¼ y00.

Comment [Compute successive corrections.]

while id(t)i > tol, do

(1) Use a low order method and solve the discretized error Eq. (18).
(2) Use Gaussian quadrature and compute the interpolating polynomial d(t).
(3) Update the approximate solution P[0](t) = P[0](t) + d(t).

end do
4.2. SDC Methods for IDE Systems

Generalization of SDC methods to Eqs. (14)–(16) is straightforward. In this section, we discuss the error
equations and a low order method for the IDE system.
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In a time marching scheme, assume all density functions and locations of steps are derived at previous times
up to t � Dt, we can rewrite the solution as
/ðx; tÞ ¼ t þ
Z L

0

Kðx� y; tÞ/ðx; 0Þdy

þ
XN

j¼1

Z t�Dt

0

Kðx� wjðsÞ; t � sÞqjðsÞdsþ
Z t�Dt

0

oKðx� wjðsÞ; t � sÞ
owj

ljðsÞds

" #

þ
XN

j¼1

Z t

t�Dt
Kðx� wjðsÞ; t � sÞqjðsÞdsþ

Z t

t�Dt

oKðx� wjðsÞ; t � sÞ
owj

ljðsÞds

" #
. ð19Þ
We further represent each step location wj(s) as a function of its velocity w0jðsÞ using Picard integral equation
wjðsÞ ¼ wjðt � DtÞ þ
Z s

t�Dt
w0jðaÞda. ð20Þ
The unknowns become the densities {qj(s)}, {lj(s)} and the step velocities w0jðsÞ for s from t � Dt to t and
j = 1, . . . ,N. We assume that when s 2 [t � Dt, t], approximate solutions to the unknowns are given by
q½0�j ðsÞ, l½0�j ðsÞ and ðw½0�j ðsÞÞ

0, the errors are then introduced as
dqj
ðsÞ ¼ qjðsÞ � q½0�j ðsÞ;

dlj
ðsÞ ¼ ljðsÞ � l½0�j ðsÞ;

dw0j
ðsÞ ¼ w0jðsÞ � ðw

½0�
j ðsÞÞ

0.

8>><
>>: ð21Þ
Plug these errors back to the original IDE system and the error equations follow.
For the low order method, consider one step in the marching scheme from ti�1 to ti for i = 1, . . . ,p, where

t0 = t � Dt and t1, . . . , tp are the p Gaussian points in [t � Dt, t]. Take the case i = 1 as an example (and for the
ease of notations), linear approximations to the error functions give
dqj
ðsÞ ¼ dqj

ðt0Þ þ ðdqj
ðt1Þ � dqj

ðt0ÞÞ s�t0

t1�t0

� �
;

dlj
ðsÞ ¼ dlj

ðt0Þ þ ðdlj
ðt1Þ � dlj

ðt0ÞÞ s�t0

t1�t0

� �
;

dw0j
ðsÞ ¼ dw0j

ðt0Þ þ ðdw0j
ðt1Þ � dw0j

ðt0ÞÞ s�t0
t1�t0

� �
.

8>>>><
>>>>:
The unknowns are then reduced to dqj
ðt1Þ, dlj

ðt1Þ, and dw0j
ðt1Þ. These are the error function values at t1 which

can be derived using the following procedures:
The first step is to derive the locations of steps using an explicit method. Plug the approximation

dw0j
ðgÞ � dw0j

ðt0Þ into the Picard integral equation wjðsÞ ¼ w½0�j ðsÞ þ
R s

t0
dw0j
ðgÞdg, we have an approximation
~wjðsÞ ¼ w½0�j ðsÞ þ ðs� t0Þdw0j
ðt0Þ ð22Þ
for s 2 [t0, t1]. We want to mention again that w½0�j ðsÞ is a polynomial of degree p � 1. Next, as the locations of
steps are known, we solve the boundary conditions in Eqs. (15) and (16). For the unknown errors, letting x
approaching the jth step and assuming that t1 � t0 is small hence higher order terms of t1 � t0 are neglected,
these equations approximately take the form
� 1

2

w0j
2

dlj
ðt1Þ þ dqj

ðt1Þ
 !

� 1

2
kþdlj

þ o/
ox

				
x¼~wjðt1Þ

þ kþ/jx¼~wjðt1Þ ¼ g1;jðt1Þ; ð23Þ

1

2

w0j
2

dlj
ðt1Þ þ dqj

ðt1Þ
 !

� 1

2
k�dlj

þ o/
ox

				
x¼~wjðt1Þ

� k�/jx¼~wjðt1Þ ¼ g2;jðt1Þ; ð24Þ
where w0j ¼ ðw
½0�
j ðt0ÞÞ0 þ dw0j

ðt0Þ and all available quantities are collected in g1,j(t1) and g2,j(t1). Derivation of
these equations uses the tedious local Taylor expansion analysis and is performed using mathematica (same
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procedure as in the proof of jump conditions for moving layer potentials). The first and third terms in Eq. (23)
come from the right limit of /x in Eq. (16) when x approaches ~wjðt1Þ. The first term is due to the discontinu-
ities in the derivatives of the single and double layer potentials when calculating the right limit of /x. The sec-
ond and fourth terms in Eq. (23) come from the right limit of �k+/ in Eq. (16) when x approaches ~wjðt1Þ. The
second term is due to the discontinuity in the double layer potential when computing the right limit of /. Eq.
(24) is obtained similarly from Eq. (15).

In the final step, the velocity dw0j
is updated according to
dw0j
ðt1Þ ¼ �ðw½0�j ðt1ÞÞ0 �

2ðq½0�ðt1Þ þ dqj
ðt1ÞÞ

2þ l½0�ðt1Þ þ dlj
ðt1Þ

; ð25Þ
which is the error equation form of Eq. (14).
Recently in [39], it was shown that for linear problems, the original SDC method is equivalent to solving a

preconditioned linear system using Neumann series expansion. This observation was then coupled with New-
ton–Krylov methods, and the performance of the accelerated scheme was dramatically improved, especially
for stiff systems. Incorporating this new technique into our step-flow simulator is being proposed.

4.3. Efficient evaluation of diffusion potentials

In this section, we describe a fast convolution technique for the efficient evaluation of the history dependent
layer potentials required by the algorithm presented in previous section. This technique was first introduced by
Greengard and Strain in [28]. The readers are referred to [26,28,29,44,67,68] for recent advancements. Since
this technique is not yet widely known, in the following, we describe the main ideas using the single layer
potential as an example. It is given by
Z t

0

Z
CðsÞ

Kðx� yðsÞ; t � sÞqðyðsÞ; sÞdsy ds;
where K(x, t) is the periodic Green’s function, q(y(t), t) is a given density defined on the moving interface C(t).
Because of the history dependency, if N points are used in discretizing C(t), J time steps are marched, and the
potential is evaluated at M points for each step, then direct numerical evaluation of the potential requires
O(J2MN) operations. The Greengard–Strain technique, on the other hand, can reduce the work to the asymp-
totically optimal O(J(N + M)).

In [28], analytical results are presented in d dimensions. For simplicity of notations, in the following, we
focus on d = 1. In this case, the periodic Green’s function is given by Eq. (8) or (9), C(t) becomes the set
of N moving steps each denoted by wj(t), and the single layer potential becomes
Z t

0

XN

j¼1

Kðx� wjðsÞ; t � sÞqðwjðsÞ; sÞds.
By introducing a small constant D, usually chosen the same as Dt, the first step of the technique rewrites the
layer potential as the sum of
Z t�D

0

XN

j¼1

Kðx� wjðsÞ; t � sÞqðwjðsÞ; sÞds
and
 Z t

t�D

XN

j¼1

Kðx� wjðsÞ; t � sÞqðwjðsÞ; sÞds.
Following the terminology in [28], the first part is referred to as the history part, and the second the local

part. Notice that in the history part, as t � s > D, the Fourier domain representation of K(x � wj(s), t � s)
decays rapidly as a function of jkj. Thus the history part can be represented by a rapidly decaying Fourier
series
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Z t�D

0

XN

j¼1

Kðx� wjðsÞ; t � sÞqðwjðsÞ; sÞds �
Xq

k¼�q

akðtÞeikx;
where q is a parameter depending only on the required accuracy and D, and the coefficients ak(t) are given by
akðtÞ ¼
Z t�D

0

XN

j¼1

1

2p
e�k2ðt�sÞe�ikwjðsÞqðwjðsÞ; sÞds; ð26Þ
which can be updated recursively in a marching scheme.
Assume that at time t the Fourier series expansion

Pq
k¼�qakðtÞeikx for the history part is given. At time t + D,
Z tþD

0

XN

j¼1

Kðx� wjðsÞ; t þ D� sÞqðwjðsÞ; sÞds

¼
Z t

0

XN

j¼1

þ
Z tþD

t

XN

j¼1

�
Xq

k¼�q

akðt þ DÞeikx þ
Z tþD

t

XN

j¼1

Kðx� wjðsÞ; t þ D� sÞqðwjðsÞ; sÞds.
Therefore evaluation of the potential contains two parts: updating the Fourier coefficients ak(t + D) from ak(t),
and evaluating the local integral
Z tþD

t

XN

j¼1

Kðx� wjðsÞ; t þ D� sÞqðwjðsÞ; sÞds. ð27Þ
4.3.1. Updating the Fourier coefficients ak(t + D)

To calculate the Fourier coefficients ak(t + D), notice that
Xq

k¼�q

akðt þ DÞeikx �
Z t

0

XN

j¼1

Kðx� wjðsÞ; t þ D� sÞqðwjðsÞ; sÞds.
Divide this integral into two parts
R t

0

PN
j¼1 ¼

R t�D
0

PN
j¼1 þ

R t
t�D

PN
j¼1 and use the Fourier domain representation

for K(x, t) in Eq. (8), the first part becomes
Z t�D

0

XN

j¼1

Kðx� wjðsÞ; t þ D� sÞqðwjðsÞ; sÞds ¼
Z t�D

0

XN

j¼1

X1
k¼�1

1

2p
e�k2ðtþD�sÞeikðx�wjðsÞÞqðwjðsÞ; sÞds;
which, by comparing with ak(t) in (26), is approximately
Xq

k¼�q

e�k2DakðtÞeikx.
For the second part we have
Z t

t�D

XN

j¼1

Kðx� wjðsÞ; t þ D� sÞqðwjðsÞ; sÞds �
Xq

k¼�q

bkðt þ DÞeikx;
where
bkðt þ DÞ ¼
Z t

t�D

XN

j¼1

1

2p
e�k2ðtþD�sÞe�ikwjðsÞqðwjðsÞ; sÞds ð28Þ
can be calculated using numerical quadratures. Notice that when we have N steps (interfaces), the total num-
ber of operations for calculating bk(t + D) for k = �q, . . . ,q is O(qN), hence the total amount of work to derive
the coefficients {ak(t + D)} is O(qN) using
akðt þ DÞ ¼ e�k2DakðtÞ þ bkðt þ DÞ. ð29Þ
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The evaluation of Fourier series at M points requires O(qM) operations, therefore, evaluating the history part
for a total of J time steps requires O(qJ(N + M)) operations instead of O(J2NM).

4.3.2. Evaluating the local part
For the local part in (27), traditional trapezoidal rule or Gaussian quadratures in time could not provide an

accurate solution due to the singularity of the Green’s function. In our solver, we apply a slightly modified
product rule, where the singularity of the Green’s function is extracted, and the remaining smooth part in
the integrand is approximated by a polynomial. This approximation is then analytically evaluated, as
explained by the following procedure.

Consider the simplified moving layer potential in one dimensional space,
Z t

0

e�
ðx�yðsÞÞ2

sffiffiffi
s
p qðyðsÞ; sÞds; ð30Þ
notice that y(s) = y(0) + sh(s) where h(s) is a smooth function, the singular part of the integrand can be rep-

resented as e�
ðx�yð0ÞÞ2

s =
ffiffiffi
s
p

, and the remaining part becomes smooth and can be approximated by a Legendre
polynomial expansion
e2ðx�yð0ÞÞhðsÞ�sh2ðsÞqðyðsÞ; sÞ �
XP

k¼0

ckLkðsÞ.
Using formula
Z t

0

e�
x2

sffiffiffi
s
p sp ds ¼ x2pþ1Gamma � 1

2
� p;

x2

t

� �
;

where Gamma(a,z) is the incomplete Gamma function defined by
Z 1

z
ta�1e�t;
the local part can then be evaluated to higher order.
In the current implementation, the local part is evaluated directly using above techniques. When the num-

ber of steps N is fewer than several thousands, we found the computation efficiency is very acceptable. How-
ever, when N and M are large, evaluating the local part at each time step requires approximately O(NM) work,
which will be the dominating cost in our solver. Reducing this cost is currently being studied and it was found
that techniques similar to the new version of fast Gauss transform [30] can be used to reduce the amount of
work to O(N + M). Discussion of this accelerated method will be reported at a later time.

5. Local collision model

In the numerical simulations, we noticed that for certain initial and parameter settings, there is a possibility
that two steps collide and hence form a ‘‘singularity’’. Such collisions have been observed for steps with the
same as well as opposite height signs as shown in Fig. 2. In the left plot, the convergence test is carried out for
collisions of two steps with heights +1 and �1, respectively. In the right plot, both of the colliding steps have
height +1. Convergence tests show that the collisions are very unlikely the results of numerical truncation
error. Analytical understanding of these ‘‘singularities’’ and conditions under which they may happen are still
research topics being investigated.

For most front tracking methods, when the steps are close to collision, numerical simulations may require
extremely fine mesh in both temporal and spatial directions to be employed near the singularity. This kind of
singularity or near singularity formations have been one of the major numerical difficulties, especially for inte-
gral equation based schemes.

In our algorithm, instead of adaptive mesh refinement, we introduce the ‘‘local collision model’’: when the
steps are ‘‘close’’ to each other, we assume they march at constant velocity; and once they collide, we adopt a
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simple physical model where two steps either cancel each other when they have opposite signs (see the first
image in Fig. 2), or stick to each other and move as a new step when they have the same sign (see the second
image in Fig. 2). The ‘‘constant speed’’ assumption is mostly based on our refined time-step numerical simu-
lations. In Fig. 2, it can be seen that when two steps are close to collision, the leading order approximation of
the step speed is given by a constant. The cancelation of two steps with opposite signs after the collision is
physical, it means that the gap between two terraces has been filled by adatoms and the two terraces are con-
nected to form a new one (see the first image in Fig. 2). It is also physical that two steps with same sign move
together after they get close, because there is a strong short-range repulsive interaction between such two steps
[14,69,58,72,73], the step above cannot surpass the one below.

When p (P 2) steps move together, we adopt the method used by Elkinani and Villain [17]. The speed of a
step bunch consisting of p steps wj,wj+1, . . . ,wj+p�1, when all steps have height +1, is v ¼ ðk�/jx¼w�j

þ
kþ/jx¼wþjþp�1

Þ=p. The step bunch may dissociate when step wj+p�1 tends to move faster than the other steps,

i.e., when k�/jx¼w�j
=ðp � 1Þ < kþ/jx¼wþjþp�1

. Also, if more accurate local properties need to be resolved, the full

short-range repulsive interactions can be added to our model.

6. Numerical examples

In this section, we present several simulation results for epitaxial step-flow growth in 1 + 1 dimensions. We
compare our numerical results with available analytical and numerical solutions for motions of steps in slow
deposition regime (Pe� 1) and motion of a uniform step train in fast deposition regime (Pe � 1).

When a uniform step train moves in steady state, there is an analytical solution to the BCF model (12). In
our first numerical experiment, we consider a uniform step train and compare our simulation results with ana-
lytical solutions. We use n = 4 steps and periodic boundary conditions in [�p,p]. The length of each terrace is
uniformly lj ¼ �l ¼ 2p

n � 1:57. We set k+ = k� = 1, F ¼ 2
ð1�e��lÞð2þ�lÞ. The Peclet number is hence approximately

1.7. Assume initially /(x, 0) is the steady state solution to system (12), then it is straight forward to verify that
the solution
w0j ¼ 1;

/ðx; tÞ ¼ 2
1�e��l � F þ e�xþt

e��l�1
� F ðx� tÞ

(
ð31Þ
solves the BCF model. In Fig. 3, we study numerical error in the location of first step w1(t) as a function of
time. The analytical solution is given by a linear function. In the plot, q is the number of terms in the Fourier
expansion for the history part. It can be seen that approximately 110 Fourier terms can guarantee seven digits
for Dt = 10�3. Same conclusion applies to other variables as well.
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Fig. 3. Comparison of numerical solutions and the analytical solution for different number of Fourier terms.
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It is well known that the Schwoebel barrier (k+ > k�) stabilizes uniform step trains [64]. Our next example
considers this stabilizing effect. We consider a step train with n = 50 steps, each with height �1. The average
terrace length is given by �l ¼ 2p=n � 0:13. For the Schwoebel barrier, we set k+ = 109 and k� = 1. We set
F = 0.006 and hence the Peclet number is approximately 10�4. The initial location of each step is set to
wj ¼ 2pj=nþ Rj

�l where Rj is a random variable uniformly distributed in [�0.005,0.005]. Due to the Schwoebel
effect, the initially perturbed step train quickly converges to a uniform step train, and the velocity of each step
converges to w0j ¼ F�l � 0:00075. Our numerical simulation results agree with these analytical results, as shown
in Fig. 4. In the left, we plot the variance of step locations defined as
1

n� 1

Xn

j¼1

ðwjþ1 � wj � �lÞ2;
where wn+1 is defined as w1 + 2p. In the right, we plot the velocity of the first step as a function of time.
In our third example, we numerically verify the step velocity oscillations in a fast step-flow observed in pre-

vious simulations [53,70]. The result is shown in Fig. 5. As in [70], we start the simulation from a uniform step
train, with parameters k+ = 109, k� = 102, F = 0.6, and �l ¼ 2p, hence the Peclet number is approximately 24.
The initial / is set to zero, representing the growth from a clean surface. It can be seen that in the simulation,
oscillations occur in step velocity while the solution converges to the steady state. This simulation result agrees
with those in [53,70] (see, for example, Fig. 6.25 in [70]). See Section 2 for a brief review and discussion on this
step velocity oscillation.

Applications of our method to problems with stationary interfaces are straight forward. To further test the
correctness of our code, we study a problem with fixed interfaces
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ut ¼ uxx þ 1;

ux � u ¼ �t � 2et; when x ¼ 0;

ux þ u ¼ t; when x ¼ L;

w0 ¼ 0.

8>>><
>>>:
Note that this example is used only to test the correctness of our code for stationary interfaces. The system is
slightly different from BCF system (12) and not necessarily a model for step-flow growth. The analytical solu-
tion to this problem is given by u(x,y) = e�x+t + t and the double layer density is given by l(t) = et(1 � e�L),
where L is the length of each periodic interval and we assume the solution is periodically expanded. In Fig. 6,
we plot the error of the computed double layer density function. In the calculation, we set L = 2p/4 and
Dt = 10�3. For the first 1000 time steps, the numerical results are accurate in the first 6 digits.

To test the order of SDC accelerated solver, in the next example, we present convergence results for our
method with different number of SDC corrections for a simple problem with 4 steps. The initial locations
of steps are not uniform, hence analytical solution is not available. In Table 1, we present convergence study
of our method using two Gaussian–Radau points (t2 is the right end point). M1 is the solution derived using
the scheme introduced in Section 4.1, but with only one correction, and M2 is the method with two correc-
tions. The convergence rate is determined by the ratio

xDt�xDt=2

xDt=2�xDt=4
, where Dt is the step size in the marching
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Table 1
A second order method based on SDC

Dt D = 0.01 D/2 D/4 D/8 D/16 D/32

xDt (M1) 5.667252 5.668801 5.669575 5.669962 5.670156 5.670252
Ratio 2.00 2.00 1.99 2.02

xDt (M2) 5.670149 5.670299 5.670336 5.670346 5.670348 5.670349
Ratio 4.05 3.90 4.02 4.00
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scheme, and xDt is the location of the third step at time t = 1. It can be shown from the numerical results that
the method with two corrections is second order. However, we want to mention that for the same time step
size, efficiency of the second order solver slows down significantly. This is due to the iterative refining proce-
dure and evaluation of special functions. Currently, we are trying to improve the efficiency by coupling the
GMRES accelerated SDC methods introduced in [39] with precomputed tables, and by choosing the optimal
step size and linear equation solver for a prescribed accuracy requirement.

Finally, we perform simulations for two systems of non-uniform arrays of steps in the regimes Pe = O(1)
and Pe� 1, respectively. In Fig. 7, when the Pe number is approximately 0.4, we consider 10 steps which are
non-uniformly distributed initially and the heights of steps are set to +1. We use k+ = 107 and k� = 10. In the
left, the locations of steps are plotted as a function of time, and in the right, the relative locations (with respect
to the first step) are shown. From the plots, oscillations of the step locations can be observed, which we refer to
as the ‘‘water wave’’ phenomenon.

In Fig. 8, we consider a surface which initially has 100 steps and the heights are randomly chosen as +1 or�1.
The Peclet number is approximately 0.004 for this problem and we choose k+ = 109 and k� = 467. In the local
collision model, we assume that two steps either cancel each other if they have opposite heights, or they move
together as a new step when the sum of heights is nonzero. The cutoff distance is the lattice constant a = 0.0012.
Also, nucleation of new steps on local maximal terraces is allowed and the critical nucleation length is lc = 0.063.
The Schwoebel effect is weak, indicated by a small ls: ls = D/k� � a = 0.0009 < a. We plot several snapshots of
the surface in Fig. 8 for t = 0, 2000, 4000, 6000, and 8000, respectively. In this simulation, both collisions and
nucleations are frequently encountered. The number of steps increases from 100 to approximately 200 during
the simulation process (hence the Peclet number becomes smaller) and the ‘‘coarsening process’’ (big mounds
are formed by combining smaller ones) can be observed.
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Also in this simulation, when t = 2000, the surface profile shows a ‘‘selected slope’’ (see left of Fig. 9), which
is a result of the deterministic nucleation on the top terraces and the weak Schwoebel effect. This can be ana-
lyzed using the quasi-static approximation as follows: Consider a top terrace with a uniform step train on its
right, see for example, the left peak in the left of Fig. 9. Assume the distance between steps in the uniform step
train is l, and the width of the top terrace is l0. Since the Schwoebel effect is weak, it can be neglected when
calculating the velocity of the downward step wj of the top terrace right above the uniform step train, which
from Eq. (5) is given by
2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

t=2000

3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4

t=8000

Fig. 9. Comparisons of the surface profile with the continuum approximations.
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dwj=dt ¼ 1

2
dl0=dt ¼ 1

2
a2Fl0 þ

1

2
a2Fl.
In a steady state, the width of the top terrace l0 increases approximately from 0 to lc between two nucle-
ation events in time t = 1/(a2F). If we assume that the uniform step train has a fixed slope, i.e., l is fixed,
we can solve the ODE and get l = lc/(e � 1) = 0.58lc, and the selected slope is a/l = 0.033. The role of the
Schwoebel effect here is to stabilize the uniform step train. The left image in Fig. 9 shows the comparison
of the uniform step train at t = 2000 and the continuum surfaces with the selected slope. They agree quite
well.

The surfaces with selected slope are not stable according to our simulations: new patterns form after long
time. There are some continuum approximations for the stationary states (derived from quasi-static approx-
imation) which model the competition between the Schwoebel and up–down asymmetry effects of the stepped
surface [60,72,73]. The analytical expression for the stationary profile (right branch) is given by
hðxÞ ¼ a2

3ls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ls

a
� 1

mð0Þ

� �2

� lsx
6a2

s
þ ls

a
log

ls

a
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ls

a
� 1

mð0Þ

� �2

� lsx
6a2

s						
						�

ls

a
þ 1

mð0Þ þ
ls

a
log jmð0Þj

0
@

1
Aþ hð0Þ;
where the peak is at x = 0, h(0) is the height of the peak, and m(0) is the slope on one side of the peak. From
the right of Fig. 9, some portions of our simulation result at t = 8000 do show this stationary profile, in which
m(0) is taken to be a/l1, where l1 is the width of the terrace right below the top one. As discussed in [17,60], this
stationary profile does not apply to the valleys due to the deterministic nucleation and the weak Schwoebel
effect: deep valleys tend to be healed as time increases based on the quasi-static approximation of the step
dynamics; while the stationary profile gives an infinitely deep crack. This is also seen in our simulation results.

The standard deviation of the surface width measures the roughness of the surface, and usually increases with
time according to a power law tb [58]. In this simulation, we found that b = 0.43. The exponent b � 0.5 has been
seen in some experiments [18,19], kinetic Monte Carlo simulations [1,66,74], and analysis using continuum
models without slope selection [31,45].

7. Conclusion and future work

In this paper, we discuss an integral equation approach for solving diffusion problems with moving inter-
faces. Jump conditions of moving layer potentials are studied and the results are applied to the BCF model
which describes the epitaxial step-flow growth of crystals. The partial differential equation is reduced to an
integro-differential equation system where the unknowns are only defined on the steps. For this system, we
introduce two recently developed numerical techniques: higher order can be derived using spectral deferred
correction ideas in the temporal direction; and moving layer potentials can be efficiently evaluated using fast
convolution methods designed for dense convolution type matrices. The resulting simulation toolbox has been
tested and applied to the BCF model in 1 + 1 dimensions with different parameter settings. Numerical results
are compared with available analytical and simulation results.

Recently, several new techniques have been proposed to further improve the accuracy and efficiency of the
current solver. These include the acceleration of the SDC techniques using Krylov subspace methods and the
efficient evaluation of the ‘‘local part’’ in diffusion potentials of both volume and layer types.

We have focused on the integral equation method in this paper. Applications of the method in 1 + 1
dimensions include the study and validation of the quasi-static approximation under various circumstances,
and when it is no longer valid, the properties of the adatom density and related nucleation models. Real
crystal surfaces are 2 + 1 dimensional, and straight steps are unstable under the Schwoebel effect [3,56–59].
Generalization of the solver to 2 + 1 dimensions is being considered. Except for several technical details
including the discretization of steps and local collision and nucleation models, such generalization is
straightforward. More physics such as the step–step and adatom–step elastic interactions [14,69,72,73]
and more realistic nucleation models can be incorporated within the framework of our integral equation
method. These generalizations and applications are being proposed and results along these directions will
be reported in the future.
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